

Myriam Britto dos Santos

Ergonomia, Carga mental de Trabalho, Riscos e Prevenção de Acidentes: O Caso do Trabalhador em Histotécnica

Tese de Doutorado

Tese apresentada ao Programa de Pósgraduação em Design da PUC-Rio como requisito parcial para obtenção do título de Doutor em Design.

Orientadora: Anamaria de Moraes Co-orientadora: Valéria Barbosa Gomes

Myriam Britto dos Santos

Ergonomia, Carga mental de Trabalho, Riscos e Prevenção de Acidentes: O Caso do Trabalhador em Histotécnica

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Design do Departamento de Artes & Design do Centro de Teologia e Ciências Humanas. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Dra. Anamaria de Moraes Presidente/PUC-Rio

Profa. Dra. Vera Lucia M. dos S. Nojima PUC-Rio

Prof. Dr. Heliomar de Azevedo Valle UNI-Rio

Prof. Dr. Carlos Alberto Basílio de Oliveira
UNI-Rio

Prof. Dr. Nilton Pinto Ribeiro Filho
UFRJ

Prof. Dr. Paulo Fernando Carneiro de Andrade Coordenador Setorial do Centro de Teologia e Ciências Humanas PUC-Rio

Rio de Janeiro, 29 de novembro de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Myriam Britto dos Santos

Psicóloga, Bacharel e Licenciada em Psicologia graduada pela Universidade Gama Filho, 1979. Especialista em Ergonomia, Centro de Pósgraduação em Psicologia Aplicada ISOP/FGV, 1982. Mestre em Psicologia, Área de Concentração Processos Cognitivos, Instituto de Psicologia da UFRJ, 2001. Ergonomista Certificada pela Câmara Técnica de Certificação do Ergonomista Brasileiro -Associação Brasileira de Ergonomia. Fundadora da ABERGO. Pesquisadora bolsista do CNPq de apoio técnico (1A CNPq - 01/98 -07/99), mestrado (IP/UFRJ, de 1998 - 2001), doutorado (Processo 1408382004-0) com foco em Psicologia relacionados à Cognitiva, Ergonomia Psicológica, à carga de trabalho, prevenção de acidentes, sofrimento psíquico e humanização do trabalho.

Ficha Catalográfica

Santos, Myriam Britto dos

Ergonomia, carga mental de trabalho, riscos e prevenção de acidentes: o caso do trabalhador em histotécnica / Myriam Britto dos Santos; orientador: Anamaria de Moraes/coorientador Valéria Barbosa Gomes – 2007

232 f.: il.; 30 cm

Tese (Doutorado em Design)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

1. Artes – Teses. 2. Ergonomia. 3. Carga mental de trabalho. 4. Método L.E.S.T. 5. Carga de trabalho. 6. Sofrimento psíquico. 7. Micrótomo rotativo. 8. Histotécnica. I. Moraes, Anamaria. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Artes. III. Título.

A minha mãe, Lucia, que me faz sentir que o amor transborda como missão no mundo, que o amor vive eterno à parte de um mundo de ilusões.

Agradecimentos

Á minha orientadora, Profa. Dra. Anamaria de Moraes, primeira *Fellow* da IEA, em toda a América Latina, meu reconhecimento e gratidão pela presença afetiva e instigante orientação imantada pelo conhecimento e pela valorização da pessoa humana no trabalho.

Á Profa. Dra. Valéria Barbosa Gomes, Professora Doutora em Saúde Coletiva pela Universidade do Estado do Rio de Janeiro, minha co-orientadora, pelo incentivo e contribuição enriquecedora no desenvolvimento desta pesquisa.

Ao Ilustre Prof. Dr. Carlos Alberto Basilio de Oliveira, Professor Titular da Disciplina de Anatomia Patológica do Hospital Universitário Gaffrée e Guinle, pelo acolhimento, gentileza e, apoio incondicional em todas as fases desta pesquisa.

Ao Prof. Dr. Heliomar de Azevedo Valle, um ser de luz, sintonizado com a inteligência e sensibilidade, minha eterna amizade.

Aos Histotécnicos do Laboratório de Anatomia Patológica do Hospital Universitário Gaffrée e Guinle, pela confiança e colaboração, minha profunda admiração como pessoas e trabalhadores pelo nobre trabalho que realizam.

À direção do Hospital Universitário Gaffrée e Guinle, onde a pesquisa foi realizada permitindo a coleta de dados imprescindíveis.

Ao Prof. Dr. Ir. Jan Dul, Professor of Ergonomics Management da RSM Erasmus University, pelas sugestões de leituras e consultas a bases de dados relevantes que me foram dadas por ocasião do 5º Ergodesign, 5º Congresso Internacional deErgonomia e Usabilidadede Interfaces Humano-Tecnologia: Produtos, Informação, Ambiente Construído, Transporte, LEUI-PUC-Rio em 2005.

Ao Prof. Dr. Nilton Pinto Ribeiro Filho, uma pessoa rara, que reúne sabedoria e ações determinadas numa trajetória dedicada à investigação científica, meu carinho e admiração.

Aos Professores do Curso de Doutorado em Design, pelo acesso às leituras e pelos relevantes enfoques teóricos apresentados em seus cursos.

Aos funcionários da Secretaria do Departamento de Artes e Design, (em ordem alfabética), Aylton Romão Pessanha, Chrystiane Oliveira Alves, Claudio Roberto Souza Barros, Josué Alves Assis Silva, Marlon Santos de Oliveira, Monica Pinho do Nascimento, Rodrigo Oliveira Medeiros, Romário César de Sousa, Verônica da E. Silva Paiva, pela solicitude que dispensaram a minha pessoa.

A todos os amigos do Curso de Doutorado e do Laboratório de Ergonomia e Usabilidade de Interfaces em Sistemas Humano-Tecnologia- LEUI-PUC-Rio pelos momentos partilhados.

Ao Dr. Rodrigo Panno Basílio de Oliveira, Professor Assistente de Anatomia Patológica da UNI-RIO e da PUC-Rio e aos residentes do Laboratório de Anatomia Patológica, (em ordem alfabética), Dr. André Luiz da Rocha Azevedo, Dra. Maria Clara Reder de Sousa, Dra. Roberta Acar Pereira, e Dra. Verônica Goulart Moreira, pelo carinho e colaboração durante as visitas realizadas ao Hospital Universitário Gaffrée e Guinle.

Aos funcionários do Laboratório de Anatomia Patológica do Hospital Universitário Gaffrée e Guinle, em especial, ao secretário Ronildo Bezerra dos Santos.

À Profa. Dra. Vera Lúcia Moreira dos Santos Nojima pela presença simpática e incentivadora em todos os momentos.

Ao Prof. Dr. Carlos Américo Alves Pereira pelas sugestões esclarecedoras e afável disponibilidade para troca de idéias.

Ao CNPq pelo apoio financeiro na forma de bolsa de estudo.

A Deus e aos mentores espirituais.

À minha família e em especial aos meus pais, Derly Antonio dos Santos (in memoriam), minha incomensurável saudade e Lucia Britto dos Santos, minha mãe, terna e eterna em meu coração.

À minha filha Letícia, um sonho de Deus, que resplandece de alegria em minha vida.

Resumo

Santos, Myriam Britto dos; Moraes, Anamaria de. (orientadora), Gomes, Valéria B. (co-orientadora) Ergonomia, Carga Mental de Trabalho, Riscos e Prevenção de Acidentes: O Caso do Trabalhador em Histotécnica. Rio de Janeiro, 2007. Pp.232. Tese de Doutorado - Departamento de Artes & Design, Pontifícia Universidade Católica do Rio de Janeiro.

Em uma pesquisa descritiva e de estudo de campo, buscou-se avaliar quais indicadores de carga mental (CM) de trabalho são predominantes para a produção de acidentes em uma tarefa de microtomia. A carga mental depende das exigências da tarefa e do grau de mobilização do sujeito, da fração de sua capacidade de trabalho que ele investiu na tarefa, considerando-se que o grau de prazer e satisfação no trabalho pode variar em função da natureza da tarefa executada. Partiu-se da hipótese que os fatores de carga mental de trabalho associados ao risco de acidentes a que está exposto o operador no manuseio do micrótomo rotativo representam fonte de sofrimento psíquico. Os sinais de sofrimento psíquico podem ser vinculados à realização de tarefas consideradas perigosas e, muitas atividades de trabalho podem ocasionar desgastes e custos para o indivíduo de ordem física, mental, emocional e afetiva. Foi relevante examinar quais foram os fatores organizacionais referentes às condições ambientais e aos horários de trabalho, para uma ação preventiva, em conjunto aos fatores predominantes de carga mental. O suporte metodológico da pesquisa envolveu a elaboração de um questionário adaptado do método L.E.S.T. (Laboratório de Economia e Sociologia do Trabalho) que avalia a carga mental a partir de quatro indicadores. a saber, constrangimento complexidade/rapidez; atenção, e minúcia. Os resultados obtidos mostraram que a variável complexidade-rapidez, minúcia e atenção podem ser consideradas como efetores para carga mental A variável denominada fatores psicossociais não mostrou eficácia durante este processo de análise. Um aspecto relatado está associado aos acidentes produzidos durante a operação do equipamento e sua manutenção.

Palavras-chave:Ergonomia, Carga mental de trabalho, Método L.E.S.T., Carga de trabalho, Sofrimento psíquico, Micrótomo rotativo, Histotécnica.

Abstract

Santos, Myriam Britto dos; Moraes, Anamaria de (Advisor), Gomes, Valéria B. (Co-Advisor) **Ergonomics, Mental Workload, Risks, and Accident Prevention: the case of histotechnicians.** Rio de Janeiro, 2007. Pp.232. Doctorate Thesis - Departamento de Artes & Design, Pontifícia Universidade Católica do Rio de Janeiro.

In a descriptive research and in a field study, we evaluated which indicators of mental workload are dominant factors in accident production in a microtomy task. The mental workload depends on the task demands and on the degree of mobilization of the worker, which is the fraction of his/her work capacity invested in the task considering itself that the degree of pleasure and satisfaction in work could vary as a function of the nature of executed task. From the hypothesis that the factors of mental workload associated to accident risks to which operators are exposed during handling of a rotative microtome represent a source of psychic suffering. The signals of psychic suffering could be related to the accomplishment of tasks considered as dangerous and many work activities could cause physical, mental, emotional and affective wearing and costs to individuals. Examining which organizational factors are related to environmental conditions and to working hours was relevant to a preventive action, as well as the dominant factors of mental workload. The research methodology involved the preparation of a questionnaire adapting the L.E.S.T. (Laboratoire d'Economie et Sociologie du Travail) method that evaluates the mental workload by four indicators, which are time constraint; complexity/ swiftness; attention; and detail. The results showed that complexity/swiftness, detail and attention indicators could be considered as effective indicators of mental workload. The indicator psychosocials factors did not presented efficacy in this analytical procedure. A reported feature is associated to accidents happening during the handling of equipment and its maintenance.

Key words

Ergonomics, Mental workload, L.E.S.T. method, Workload, psychic suffering, rotative microtome, histotechnology.

Sumário

1- Introdução	18
2- Custos humanos e cargas de trabalho: carga física, cognitiva e	26
psíquica 2.1- A carga mental de trabalho e seus métodos de medida	37
2.2- Procedimentos subjetivos	53
2.2.1-Procedimentos subjetivos unidimensionais	53
2.2.2- Procedimentos subjetivos multidimensionais	56
2.2.3. Medidas fisiológicas	63
2.3- Carga mental de trabalho e fadiga	64
2.3.1-A norma ISO 10075	69
2.4- Sofrimento psíquico e humanização do trabalho	72 75
2.5- A carga psíquica de trabalho2.6- Conclusão do capítulo	73 77
3- Concepções sobre o paradigma do erro humano, a gestão de riscos e a gestão de acidentes.	82
3.1- A noção de gestão de riscos	87
3.2- Conceituação de acidente, incidente e quase acidente	88
3.3- Os modelos de estudo de acidentes	92
3.3.1- Um resumo dos modelos de acidentes a partir de Melia e colaboradores (1998)	93
3.3.1.1- Modelos explicativos de acidentes de inspiração mecanicista	93
3.3.1.1 a- Os modelos de dominó e de liberação de energia	93
3.3.11b- Os modelos de interação humano -máquina	96
3.3.1.1c- Os modelos de erro humano	97
3.3.1.2- Os modelos explicativos de inspiração psicossociológica	101
3.3.1.2 a- O modelo comportamental 3.3.1.2b- O modelo cognitivo	102 104
3.3.1.2c- O modelo cognitivo 3.3.1.2c- O modelo de perspectiva da personalidade	104
3.3.1.2d- O modelo de perspectiva sociológica	107
3.4- Conclusão do capítulo	113
4. O miauáta ma a vatativa	44-
4- O micrótomo rotativo	115 123
4.1- Conclusão do capítulo	123
5 - Métodos e Técnicas da Pesquisa	124

5.1-Delimitação da pesquisa5.2-Métodos e técnicas5.3-Procedimentos	124 126 128
6- Apresentação e análise dos resultados 6.1- Fluxograma das atividades da tarefa do histotécnico: Etapas de processamento do material a ser examinado 6.2-Análise qualitativa 6.2.1. Satisfação no trabalho 6.2.2. Relato dos acidentes 6.3. Conclusão do capítulo	131 137 162 175 176 179
7- Discussão	181
8-Conclusão Final 8.1-Conclusões 8.2-Recomendações 8.3-Desdobramentos da pesquisa	190 190 194 195
9- Referências bibliográficas	196
Anexos Anexo I: Cronograma de desenvolvimento da pesquisa Anexo II-Trabalhos publicados Anexo III: Questionário de avaliação do trabalho do histotécnico Anexo IV: Autorização para uso da imagem Anexo V: Termo de compromisso livre e esclarecido (modelo) Anexo VI: Produtos químicos Anexo VII: Resolução do comitê de Ética em pesquisa Anexo VIII: Quadro com o perfil dos participantes Anexo IX: Normas regulamentadoras: NR 7, NR 9, NR15 (Anexo nº 11, Anexo 14), NR 17 (Anexo II), NR 32, NORMA ISO 10075	

Lista de Tabelas

Tabela 1: Respostas binomiais (sim x não) para o fator	131
constrangimento de tempo.	
Tabela 2: Respostas binomiais para o fator complexidade-rapidez.	132
Tabela 3: Respostas binomiais para o fator atenção.	133
Tabela 4: Respostas binomiais para o fator minúcia.	134
Tabela 5: Respostas binomiais para os fatores psicossociais.	134

Lista de Quadros

Quadro 1: Litulos e subtitulos.	23
Quadro 2: Condições, constrangimentos, consequências,	30
resultados e qualidade do trabalho.	20
Quadro 3: Fatores da carga de trabalho.	32
Quadro 4: Principais fatores de carga mental no trabalho hospitalar.	42
Quadro 5: Métodos de avaliação das condições de trabalho.	44
Quadro 6: Definição dos níveis de cada uma das três definições	57
do SWAT.	57
Quadro 7: Definição das seis dimensões do NASA-TLX.	59
Quadro 8: Modelo de matriz (workload profile).	62
Quadro 9: Resumo de definições do conceito de carga mental de	68
trabalho.	
Quadro 10: A pirâmide de Maslow	71
Quadro 11: Os modelos de dominó e elaboração de energia.	98
Quadro 12: Os modelos de interação humano-máquina.	100
Quadro 13: Os modelos de erro humano.	101
Quadro 14: O modelo comportamental.	108
Quadro 15: O modelo cognitivo.	109
Quadro 16: O modelo de perspectiva de personalidade.	111
Quadro 17: O modelo de perspectiva sociológica.	112
Quadro 18: Três abordagens para a gestão de acidentes.	112
Quadro 19: Distinções entre carga mental e fadiga e subcarga e sobrecarga.	181
Quadro 20: Exemplos de processos cognitivos.	184
Quadro 21: Níveis de processamento de informação.	185
Quadro 22: Aspectos relacionados com a atenção no trabalho.	186

Lista de Figuras

Figura 1: Micrótomo rotativo (American Optical 820)	20
Figura 2: Representação esquemática do aumento de freqüência cardíaca.	31
Figura 3: Determinantes de carga de trabalho.	35
Figura 4: Etapas do processo cognitivo.	40
Figura 5: Fatores determinantes e consequências do trabalho	41
mental.	
Figura 6: Relação hipotética entre carga mental e rendimento.	49
Figura 7: Representação de uma PRF típica.	51
Figura 8: Representação de uma POC típica.	51
Figura 9: Micrótomo rotativo de 1905.	116
Figura 10: Detalhamento do Micrótomo <i>American Optical 820.</i>	118
Figura 11: Micrótomo Shandon 315.	119
Figura 12: Micrótomo Shandon Finesse 325.	119
Figura 13: Detalhamento do Shandon Finesse 325.	120
Figura 14: Micrótomo Shandon Finesse (R).	120
Figura 15: Micrótomo rotativo MRPO3-LUPE.	121
Figura 16: Autocut 2055, Histocut 820, entre outros.	122
Figura 17: Respostas em porcentagem das variáveis de carga	136
mental de trabalho.	
Figura 18: Aparelho processador automático de tecido.	138
Figura 19: Processo de inclusão do material.	139
Figura 20: Histotécnico retirando do interior dos cassetes de	140
plástico os fragmentos de tecidos.	
Figura 21: Material parafinado.	140
Figura 22: Fragmentos de tecidos.	140
Figura 23: Material parafinado colocado no fundo do molde de	141
metal.	
Figura 24: Conjunto molde de mental, cassete de plástico e	141
material parafinado.	
Figura 25: Bloco preparado.	141
Figura 26: Bloco de parafina colocado no micrótomo.	142
Figura 27: Detalhe do ajuste do bloco.	142
Figura 28: Outro ângulo do ajuste do bloco	143
Figura 29: Processo de microtomia.	143 143
Figura 30: Processo de microtomia/giro da manivela.	143
Figura 31: Retirada da fita de parafina. Figura 32: Fita parafinada é segura pelos dedos do histotécnico.	144
Figura 33: Técnico segura uma lâmina de vidro.	145
Figura 34: Identificação da lâmina.	145
Figura 35: Lâminas identificadas.	146
Figura 36: Histotécnico regulando o bloco no micrótomo.	147
Figura 37: Movimento sincronizado com as mãos.	147
Figura 38: Histotécnico manipulando o micrótomo.	147

Continuação.	
Figura 39: Extensão do braço direito.	148
Figura 40: Histotécnico levando a fita de parafina do micrótomo	148
para o banho-maria.	
Figura 41: Histotécnico manipula fita de parafina.	148
Figura 42: Histotécnico estica com uma pinça a fita de parafina.	149
Figura 43: Histotécnico esticando a fita de parafina na água do	149
banho-maria com as duas mãos.	
Figura 44: Histotécnico pega uma lâmina de vidro.	150
Figura 45: Histotécnico trabalhando lado a lado.	150
Figura 46: Inclusão/microtomia (detalhe do anterior).	151
Figura 47: Cooperação entre os postos de inclusão e microtomia.	151
Figura 48: Histotécnico colocando o material no molde.	152
Figura 49: Histotécnico em primeiro plano realizando a inclusão	152
de material.	
Figura 50: Comunicação e desvio do olhar da atividade.	153
Figura 51: Histotécnico prossegue a atividade.	153
Figura 52: Histotécnico afiando a navalha.	154
Figura 53: Histotécnico escolhendo reagentes e corantes.	154
Figura 54: Processo de coloração de rotina.	155
Figura 55: Histotécnico trabalhando na sala de coloração.	156
Figura 56: Histotécnico retira a lâmina da cuba com xilol.	156
Figura 57: Histotécnico segura a lâmina com material corado.	156
Figura 58: Histotécnico coloca uma gota de bálsamo sobre a	157
lâmina.	
Figura 59: Histotécnico coloca a lamínula.	157
Figura 60: Histotécnico montando a lâmina de vidro.	158
Figura 61: Histotécnico arrumando as lâminas.	158
Figura 62: Lâminas montadas.	159
Figura 63: Histotécnico faz uma apreciação do resultado.	159
Figura 64: Médicos examinando as lâminas.	159
Figura 65: Técnico de laboratório separando as lâminas.	160
Figura 66: Detalhe do anterior.	160
Figura 67: Seqüência para realização de algumas fases da tarefa	161
de microtomia (micrótomo Shandon Finesse 325).	
Figura 68: Outra seqüência da tarefa de microtomia (micrótomo	162
Shandon Finesse 325).	
Figura 69: Ferimento produzido nos dedos pela manipulação de	178
um micrótomo.	

"Sempre há uma razão para se viver.

Podemos nos elevar sobre nossa ignorância, podemos nos descobrir como criaturas de perfeição, inteligência e habilidade. Podemos ser livres! Podemos aprender a voar!"

(Richard Bach, de Fernão Capelo Gaivota, Liberdade)

"A Ergonomia é uma tomada de posição em prol do ser humano e sua dignificação; não há coerência hoje em dia no fato de se conseguirem engenhos capazes de transcender nosso planeta e não se conseguirem produzir máquinas e ferramentas capazes de proteger seus operadores contra riscos de vida, de mutilações, de doenças profissionais ou mesmo contra esforços desgastantes ou condutas neurotizantes".

Franco Lo Presti Seminério (1976), In memoriam